
Introduction to
Neural Networks
Part II : Learning of MLP

Web site of this course: http://pattern-recognition.weebly.com

http://pattern-recognition.weebly.com/


Two Parts
Part I : Neural information processing
Origins

Perceptron

Multilayer perceptron (MLP)

Convolutional networks (CNN)

Part II : Learning of MLP
An example of backpropagation learning

 Learning algorithms

Optimization and learning



Learning of MLP Network

An example of learning
Learning algorithms
Optimization theory

http://www.existor.com/en/news-neural-networks.html

Source:



Training the MLP: Backpropagation
Testing for K-class classification problem
• For a given x with unknown class

• x∈class k, 𝑖𝑓 𝑦𝑘 = 𝑚𝑎𝑥𝑖𝑦𝑖
• 𝑦𝑖 = 𝑣𝑖

𝑇𝑧 = σℎ=1
𝐻 𝑣𝑖ℎ𝑧ℎ + 𝑣𝑖0

𝑤 = 𝑤1, ⋯ , 𝑤𝐾 , 𝑣1, ⋯ , 𝑣𝐻

That is
• A w represents a MLP
• Given a w, then we can classify a pattern x

input vector

hidden 
layers

outputs

Backpropagation

A Machine Learning problem:
how to obtain the w of a MLP

• We need a set of training patterns (x,y)

• We need a learning algorithm to learn w by (x,y)

=> Backpropagation learning algorithm B: w=B(x,y)



A multilayer neural network

• A three-layer network: one hidden layer
• 9 nodes(xi, hj, yk), 6 neurons(hj, yk)

• 18 weights(w)

Input layer Hidden layer Output layer



Example problem:
Convert letters A,B,C

• Input: 1-of-K binary encoding
• Letters are encoded into binary: A - 100, B - 010, C - 001

• Output
• Convert A to B, B to C, C to A

• 100 -> 010, 010 -> 001, 001 -> 100

0

1

0

A B



Training of the network
• Given a training pair (x,y)

• x: input values,   y: desired output values

• Network training will get a weight matrix w=(wxh,why)

• Basic steps to train the network
1. Randomly initialize the weight matrix w

2. Forward propagation: y'=xw

3. Compute the error: E=y – y'

4. Compute weight change value by the error: Δw=f(E)

5. Backpropagation: w = w - Δw

6. Go to step 2
0

1

0

x ysupervised learning

𝑤𝑥ℎ
𝑤ℎ𝑦



Step 1: Random starting weights

• Now we will compute the values of the first 
hidden node h1 in the second layer

• The weights are usually initialised to be small 
random values between -1 and 1 

𝑤𝑥ℎ
𝑤ℎ𝑦

x h y



Step 2: Forward propagation
Weighted sum

• Zh1 represents the weighted sum of the node h1

𝑤𝑥ℎ
𝑤ℎ𝑦



Step 2: Forward propagation
Activation of weighted sum

• Assume we use bipolar sigmoid

• h1 = sigmoid(zh1) = sigmoid(0.2) ≈ 0.197

ℎ1 = 𝑓 𝑧ℎ1

=
1

1 + 𝑒−𝑧ℎ1

ℎ1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ1
= 2*(f(zh1) -0.5)



Step 2: Forward propagation
Matrix notation

ℎ𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ෍
𝑖=1

3

𝑥𝑖𝑤𝑖𝑗
𝑥ℎ

𝑤𝑥ℎ =
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

𝑥 = 𝑥1 𝑥2 𝑥3 = [1 0 0]

𝑧ℎ = 𝑥𝑤𝑥ℎ = 1 0 0
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

= 0.2 0.15 −0.01

ℎ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧ℎ
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 0.2 0.15 −0.01
= 0.197 0.149 −0.01



Step 2: Forward propagation
Output layer

• Assume why are the weights 
between hidden and output layers

𝑤ℎ𝑦 =
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

𝑧𝑦 = ℎ𝑤ℎ𝑦

= 0.197 0.149 −0.01
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

= 0.03 −0.0017 −0.0465

𝑦𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧𝑦𝑘

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ෍
𝑗=1

3

ℎ𝑖𝑤𝑗𝑘𝑠
ℎ𝑦

We usually use softmax function 
for output nodes, but not sigmoid.
See next slide.



Step 2: Forward propagation
Output layer

• The softmax function

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 0.03 −0.0017 −0.0465
= 0.345 0.335 0.32

𝑦′ = 1 0 0

𝑦′𝑘 = ቊ
1, 𝑝𝑘 𝑖𝑠 𝑡ℎ𝑒 max(𝑝𝑖)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0

1

0

𝑝𝑘 =
𝑒𝑧𝑦𝑘

σ𝑘=1
3 𝑒𝑧𝑦𝑘

ex

The random w gets a wrong output

x y



Step 3: Computing output error

𝑦 = 0 1 0 , 𝑝 = 0.345 0.335 0.32

𝑒 = 𝑝 − 𝑦 = 0.345 0.335 0.32 - 0 1 0
= 0.345 −0.665 0.32

e



Step 3: Computing output error
Loss & cross entropy

e

• We need to calculate the total error for all the 
outputs combined. This is called the loss or cost of 
the network and is labelled with J.

• Three possible J

• Absolute error

• Squared error

• Cross entropy

𝐽 = ෍
𝑘=1

3

𝑒𝑘 = 0.345 + 0.665 + 0.32 = 1.32

𝐽 = ෍
𝑘=1

3

𝑒𝑘
2 = 0.664

𝐽 = −෍
𝑘=1

3

𝑦𝑘𝑙𝑜𝑔𝑝𝑘 = −0 − 1 ∗ log 0.335 − 0 = 1.0936

0

1

0

y

0.345

0.335

0.32

p



Step 4: Adjusting weights 
Intuition

• It feels like
• The weights going into y1 and y3 should be lowered a 

bit, because their estimate was too high. 

• The weights going into y2 should be raised because 
they were way too low and caused a large negative 
error. 

• The bigger the error, the more the weights should be 
changed. e



Step 4: Adjusting weights 
Formula

• Mathematically the intuition is fairly easy to do. 

• The error 𝛿𝑤 of the weight w
• is proportional to the size of the thing on the other end 

of the connection (the activation value of the hidden 
node). a

• So we can just multiply the value of the hidden node ℎ𝑗
times the error 𝑒𝑘 to get 𝛿𝑤𝑗𝑘

ℎ𝑦

e

𝑤𝑗𝑘
ℎ𝑦

= 𝑤𝑗𝑘
ℎ𝑦

- 𝛿𝑤𝑗𝑘
ℎ𝑦

𝑤𝑥ℎ 𝑤ℎ𝑦h

𝛿𝑤𝑗𝑘
ℎ𝑦

∝ ℎ𝑗∗ 𝑒𝑘



Step 4: Adjusting weights 
An example

• Assume a learning rate 𝛼 = 0.01

• For example, the adjustment on the top weight 
connecting the first hidden node to the first output 

node, 𝛿𝑤11
ℎ𝑦

, could just be:
𝛿𝑤11

ℎ𝑦
= 𝛼 ∗ ℎ𝑗∗ 𝑒𝑘 = 0.01*0.197*0.345 = 0.00068

𝛿𝑤𝑗𝑘
ℎ𝑦

= 𝛼 ∗ ℎ𝑗∗ 𝑒𝑘 ∝ ℎ𝑗 ∗ 𝑒𝑘

0.197

𝑤11
ℎ𝑦

= 𝑤11
ℎ𝑦

- 𝛿𝑤11
ℎ𝑦

= 0.08 − 0.00068
= 0.07932



Step 4: Adjusting weights 
Matrix

• We can compute all the adjustments 𝛿𝑤
ℎ𝑦

with one 
matrix operation. Assume a learning rate 𝛼 = 0.01

𝛿𝑤
ℎ𝑦

= 𝛼ℎ𝑇𝑒 = 0.01
0.197
0.149
−0.01

0.345 −0.665 0.32

=
0.00068 −0.00131 0.00063
0.00051 −0.00099 0.00047
−0.00003 0.00007 −0.00003



Step 4: Adjusting weights 
Theory

• Why the formula?

• The theory of weights adjustment
• Gradient descent, partial derivatives

• The theory of optimization

𝑤𝑗𝑘
ℎ𝑦

= 𝑤𝑗𝑘
ℎ𝑦

- 𝛿𝑤𝑗𝑘
ℎ𝑦

𝛿𝑤𝑗𝑘
ℎ𝑦

∝ ℎ𝑗∗ 𝑒𝑘



Step 5: Backward propagation
Basic concept

• In Step 4 we use the error ey to update why

• Here we need to further update wxh

• Backpropagate the error of output layer ey

to hidden layer: the error of hidden layer eh

• Use the error eh to update wxh

eyeh
𝑤𝑥ℎ 𝑤ℎ𝑦



Step 5: Backward propagation
Error propagation

• Backpropagate the error of output layer ey to
hidden layer: the error of hidden layer eh

eyeh

𝑒ℎ = 𝑒𝑦𝑤
ℎ𝑦

= 0.345 −0.665 0.32
0.08 0.11 −0.3
0.1 −0.15 0.08
0.1 0.1 −0.07

= −0.007 0.17 −0.18

𝑤𝑥ℎ 𝑤ℎ𝑦



Step 5: Backward propagation

𝑧𝑒ℎ = 𝑒ℎ ⊙ 1− 𝑠𝑖𝑔𝑚𝑜𝑖𝑑2 𝑧ℎ
= −0.007 0.17 −0.18 ⊙ 0.961 0.978 0.999 = 0.192 0.147 −0.001

ey

eh

𝑤𝑥ℎ 𝑤ℎ𝑦𝑧𝑒ℎ

𝛿𝑤𝑥ℎ = 𝛼𝑥𝑇𝑧𝑒ℎ = 0.01
1
0
0

0.192 0.147 −0.001

=
0.00192 0.00147 −0.00001

0 0 0
0 0 0

x

1

0

0



Step 5: Backward propagation 
Changing weights

𝛿𝑤𝑥ℎ =
0.00192 0.00147 −0.00001

0 0 0
0 0 0

𝑤𝑥ℎ =
0.2 0.15 −0.01

−0.03 −0.1 −0.06
0.14 −0.2 0.03

𝑤𝑥ℎ − 𝛿𝑤𝑥ℎ =
0.19808 0.14853 −0.00999
−0.03 −0.1 −0.06
0.14 −0.2 0.03



Final network

• Final training result •Convert letter A to letter B
• An input of 100
• Hidden nodes activation values: 

+1, -1 and -1. 
• Output layer has weighted sums 

of -10, 10, -10, 
• Probabilities : 0%, 100%, 0%. 
• An output of 010.



Summary of the
Single-sample Training

• Given a single training sample (x,y)

• x: input values,   y: desired output values

• Network training will get a new weight matrix w

• Basic steps to train the network
1. Randomly initialize the weight matrix w=(wxh,why)

2. Forward propagation: y'=xw

3. Compute the error: E=y – y'

4. Compute weight change value by the error: Δw=f(E)

5. Backpropagation: w = w - Δw

6. Go to step 2 0

1

0

x ysupervised learning



Learning of MLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning



The learning algorithm

• We just know how to train the MLP for
"only one" learning sample: (x,y)

• How to train the MLP for a lot of learning
samples,𝒳={(x1,y1), (x2,y2), ... , (xN,yN)} ?
• Online learning
• Offline(Batch) learning



Online learning vs. Batch learning

• Online
• Randomly initialize w

• For a (xi,yi)∈𝒳 in random order
• Forward propagation:

get error e

• Backward propagation:
get weight change Δwi

• Update w : w=w-Δwi

• Until convergence

• Offline(Batch)
• Randomly initialize w

• While not converge

• For all (xi,yi)∈𝒳 in sequential
order

• Forward propagation:
get error e

• Backward propagation:
get weight change Δwi

• Average N weight changes:
Δw = (σ𝑖=1

𝑁 ∆𝑤𝑖)/N

• Update w : w=w-Δw

• Until convergence
Online learning is also called

SGD(Stochastic gradient descent)



Improving the learning algorithm

• Improving convergence
• Momentum, adaptive learning rate
• Improved gradient descent

• Mini-batch techniques

• Hardware acceleration
• Parallel training, GPGPU



Parallel training of neural nets 
An active topic of research.

No clear winner yet.

Baseline: lock-free stochastic gradient

Assume shared memory

Each processor access the weights through the shared memory

Each processor runs SGD on different examples

Read and writes to the weight memory are unsynchronized.

Synchronization issues are just another kind noise…



Learning of MLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning



Convex 



Non-convex 



Derivatives 



Optimization vs. learning 



Offline vs. online 



Stochastic Gradient Descent 


