Introduction to

Neural Networks
Part I : Learning of MLLP

Web site of this course: http://pattern-recognition.weebly.com

5] 522]
Hir

-
DI e

http://pattern-recognition.weebly.com/

1wo Parts

Part | : Neural information processing
= Origins

= Perceptron
= Multilayer perceptron (MLP)
= Convolutional networks (CNN)

Part Il : Learning of MLP
= An example of backpropagation learning
= Learning algorithms
= Optimization and learning

[eaming of MLLP Network

An example of learning
Learning algorithms
Optimization theory

Source:

Training the MLP: Backpropagation

Testing for K-class classification problem
» For a given x with unknown class
« Xxeclassk, if y, = max;y;
. _ .. T, _ VvH
Vi =V Z = Yp=1VinZn + Vio

That is
* AWwrepresents a MLP
e Given aWw, then we can classify a pattern X

<= outputs

=~ hidden
«| layers

<*== input vector

W - [Wl) ooo,WK, vl) -oo,vH]

A Machine Learning problem:
how to obtain the w of a MLP

* We need a set of training patterns (X,y)
* We need a learning algorithm to learn w by (X,y)
=> Backpropagation learning algorithm B: w=B(X,y)

Backpropagation

A multilayer neural network

* A three-layer network: one hidden layer
* 9 nodes(x;, h;, y,), 6 neurons(h;, y,)
e 18 weights(w)

Input layer Hidden layer Output layer

Example problem:
Convert letters A,B,C

* Input: 1-of-K binary encoding

* Letters are encoded into binary: A-100, B- 010, C- 001
* Output

* Convert AtoB,BtoC,Cto A

100 -> 010, 010->001, 001 ->100

.)

@:

Training of the network

* Given a training pair (X,y)
e X:input values, vy: desired output values

 Network training will get a weight matrix w=(w*",wh)

* Basic steps to train the network

1.

AN

supervised learning X

Randomly initialize the weight matrix w

Forward propagation: y'=xw

Compute the error: E=y — V'

Compute weight change value by the error: Aw=f(E)
Backpropagation: w =w - Aw

Go to step 2 . wh N w

.y
o

Step 1: Random starting weights

* Now we will compute the values of the first
hidden node h, in the second layer

* The weights are usually initialised to be small
random values between -1 and 1

xh

w

Step 2: Forward propagation
Weighted sum

* /., represents the weighted sum of the node h,
Zn = W +owi + 3wt =102+ 0% -0.03+0%0.14 =0.2

3
2 = Xy YWl

Step 2: Forward propagation
Activation of weighted sum

e Assume we use bipolar sigmoid
* h; = sigmoid(z,,) = sigmoid(0.2) = 0.197

0.467)

. 0.2
-0.0

hy = f(z1) '
® 0|
14 e Zm /

h, = sigmoid(z,,)
= 2%(Az,,) -0.5)

Bipolar Sigmoeid function

Step 2: Forward propagation
Matrix notation

x=1[X%1 X2 X3]=[1 0 0]
3 02 015 -0.01
= o . — o . Xk
h; = sigmoid (zhj) sigmoid (Z:i:lxlwu) wXh = [_0_03 01 —0.06]
0.14 -0.2 0.03

02 015 -0.01
zn=xw**=[1 0 0]|-0.03 -01 -0.06/=[0.2 0.15 —0.01]
0.14 —0.2 0.03

. 0.2

-0.0

h = sigmoid(zy)
= sigmoid([0.2 0.15 —0.01])
=[0.197 0.149 -0.01]

Step 2: Forward propagation
Output layer

* Assume W" are the weights
between hidden and output layers

— hy

0.1 -0.15 0.08

[0.08 0.11 —0.3
hy __
0.1 0.1 —0.07

0.08 011 -0.3
=[0.197 0.149 -0.01]{0.1 -—0.15 0.08 | =[0.03 —0.0017 —0.0465]
0.1 0.1 -0.07

= cln'mnlrl(7
< ,vk/

sl

We usually use softmax function
for output nodes, but not sigmoid.
See next slide.

Step 2: Forward propagation
Output layer

e Vi e*

* The softmax function px = 53 o] /
e

p = Softmax(zy) = softmax([0.03 —0.0017 —0.0465 P
=[0.345 0.335 0.32] — 1

’ —

y =[100] . 0.2 6457, 0.08 0
, |1, pg is the max(p;) -0.0

Yk =10, otherwise

The random w gets a wrong output

Step 3: Computing output error

y=[0 1 0]l,p =10345 0.335 0.32]

e=p—y=1[0345 0335 0.32]-[0 1 0]
=[0.345 —0.665 0.32]

€

Step 3: Computing output error

Loss & cross entropy

 We need to calculate the total error for all the
outputs combined. This is called the loss or cost of
the network and is labelled with J.

* Three possible J

3
e Absolute error /= zk_1|ek| = 0.345 + 0.665 + 0.32 = 1.32

3
* Squared error J = zk_leﬁ = 0.664

3
* Cross entropy ;= — vilogp, = —0 — 1 x10g(0.335) — 0 = 1.0936
k=1

Iog(1-p)
€y P

. () 0 0.345 J

. 1 0.335

O o D W soun

Step 4: Adjusting weights
Intuition

e |t feels like

* The weights going into y; and y; should be lowered a
bit, because their estimate was too high.

* The weights going into y, should be raised because
they were way too low and caused a large negative

error.
* The bigger the error, the more the weights should be
changed.)

. ()

Step 4: Adjusting weights
Formula

* Mathematically the intuition is fairly easy to do.

* The error dw of the weight w

* is proportional to the size of the thing on the other end
of the connection (the activation value of the hidden

node). a
* So we can just multiply the value of the hidden node h;

- h
times the error ey, to get Sw;;”

hy _ _ hy hy
Wi = Wy - OWjy .

hy
6wjk < hj* ey

wxh h why e

Step 4: Adjusting weights
An example

* Assume a learning rate o = 0.01
(Swjr,lcy =axhjxe, X hj*e
* For example, the adjustment on the top weight
connecting the first hidden node to the first output
node, 5W1hly, could just be:
SwY = a * hj* e, = 0.01*0.197*0.345 = 0.00068

. @ 0.00068
wiy = wyy - Swyy
= (0.08 — 0.00068

=0.07932

Step 4: Adjusting weights
Matrix

* We can compute all the adjustments sw™ with one
matrix operation. Assume a learning rate « = 0.01

0.197
sw™ = ahTe = 0.01]0.149

—0.01
[0.00068 —0.00131 0.00063‘

[0.345 —0.665 0.32]

0.00051 —0.00099 0.00047
—0.00003 0.00007 —0.00003

/" 7\ 0.00068

Step 4: Adjusting weights
Theory

* Why the formula?
hy _ hy 5 hy
Wik = Wik =Wk
5wj};{y o hi* ey
* The theory of weights adjustment

* Gradient descent, partial derivatives
* The theory of optimization

Step 5: Backward propagation
Basic concept

* In Step 4 we use the error e, to update why

* Here we need to further update wX

* Backpropagate the error of output layer e,
to hidden layer: the error of hidden layer g,

* Use the error e, to update w*

Step 5: Backward propagation
Error propagation

* Backpropagate the error of output layer e, to
hidden layer: the error of hidden layer e,

en = e,wy

0.08 011 -0.3
=10.345 -0.665 0.32]|0.1 -0.15 0.08 [=[-0.007 0.17 -0.18]
0.1 0.1 —-0.07

Step 5: Backward propagation

_ : : 72
Ze, =ep O (1 — sigmoid?(zy))
=[-0.007 017 —0.18] ©[0.961 0978 0.999] =[0.192 0.147 —0.001]

1
Swxh = axTZeh = 0.01 [O‘ [0.192 0.147 —0.001]
0

0.00192 0.00147 -0.00001
0 0 0

0 0 0

Step 5: Backward propagation
Changing weights

—0.03 -0.1 -0.06 0 0 0

0.2 0.15 -—-0.01 0.00192 0.00147 -—-0.00001
th = 6th ==
0.14 -0.2 0.03 0 0 0

0.19808 0.14853 —0.00999
wxh — sw** = —0.03 —0.1 —0.06
0.14 —0.2 0.03

Final network

* Final training result

e Convert letter A to letter B
* An input of 100
* Hidden nodes activation values:
+1, -1 and -1.
e Qutput layer has weighted sums
of -10, 10, -10,
* Probabilities : 0%, 100%, 0%.
* An output of 010.

Summary of the
Single-sample Training
* Given a single training sample (X,y)
e X: input values, y: desired output values

* Network training will get a new weight matrix w

* Basic steps to train the network

1. Randomly initialize the weight matrix w=(w",wh)
Forward propagation: y'=xw
Compute the error: E=y — V'
Compute weight change value by the error: AW=f(E)
Backpropagation: w =w - Aw

Go to step 2 . ()

supervised learning X

o U s W

.y
o

[eaming of MLLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning

The learning algorithm

* We just know how to train the MLP for
"only one" learning sample: (X,y)

* How to train the MLP for a lot of learning
samples, X={(X3,Y1), (X2,Y2), -+ v (XnYN) T 7

* Online learning
* Offline(Batch) learning

Online learning vs. Batch learning

* Online » Offline(Batch)
e Randomly initialize w * Randomly initialize w
* For a (X;,y;)€X in random order * While not converge
* Forward propagation: * For all (X;,y;)€X in sequential
get error € order

* Forward propagation:

e Backward propagation:
get error e

get weight change Aw;,
e Update W : W=w-Aw, * Backward propagation:
_ ' get weight change Aw;
* Until convergence * Average N weight changes:
Aw = (T, Aw)IN
 Update w : w=w-Aw

Online learning is also called _
e Until convergence

SGD(Stochastic gradient descent)

Improving the learning algorithm

* Improving convergence
* Momentum, adaptive learning rate
* Improved gradient descent

* Mini-batch techniques

e Hardware acceleration
e Parallel training, GPGPU

Paralle] training of neural nets

An active topic of research.

=*No clear winner yet.

Baseline: lock-free stochastic gradient

=Assume shared memory

=Each processor access the weights through the shared memory
=Each processor runs SGD on different examples

=Read and writes to the weight memory are unsynchronized.

=Synchronization issues are just another kind noise...

[eaming of MLLP Network

An example of backpropagation learning
Learning algorithms
Optimization and learning

Definition
Vz,y, VO AL 1,
FAz+(1—=A)y) < Af(z)+(1—-A)f(y)

Property
Any local minimum is a global minimum.

Conclusion
Optimization algorithms are easy to use.
They always return the same solution.

1

Example: Linear model with convex loss function.
— Curve fitting with mean squared error.
— Linear classification with log-loss or hinge loss.

Non-convex

Landscape
— local minima, saddle points.
— plateaux, ravines, etc.

N B s o0 o
¥ T M T A

T, %

Optimization algorithms

: — Usually find local minima.

: — Good and bad local minima.
g — Result depend on subtle details.

R R e
LY T T

0s

Examples

— Multilayer networks. — Mixture models.

— Clustering algorithms. — Hidden Markov Models.

— Learning features. — Selecting features (some).

Der1vatives

Derivatives indicate Second derivatives can
the general position of give an estimate of the
the closest local position of the closest local

minimum minimum.

No such local cues without derivatives
— Derivatives may not exist.
— Derivatives may be too costly to compute.

Optimization vs. learning

Empirical cost
= Usually f(w) = 3 31 L(@i, yi, w)
— The number n of training examples can be large (billions?)

Redundant examples

— Examples are redundant (otherwise there is nothing to learn.)

— Doubling the number of examples brings a little more information.
— Do we need it during the first optimization iterations?

Examples on-the-fly

— All examples may not be available simultaneously.

— Sometimes they come on the fly (e.g. web click stream.)

— In quantities that are too large to store or retrieve (e.g. click stream.)

Offline vs. online

Minimize C'():—||u|| + — ZL Ty Uiy W)

Offline: process all examples together
— Example: minimization by gradient descent

Repeat: w «— w — ()\u'+ Z l’z Yi, w)

Offline: process examples one by one
— Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example ¢,y

oL
(8 ity (Aw+8—<x, i u>)
w

Stochastic Gradient Descent

Starting poin

— Very noisy estimates of the gradient.
— Gain ~v; controls the size of the cloud.
— Decreasing gains v; = Yo(1 + Aygt) L.

— Why is it attractive?

