Introduction to Neural Networks

Part I: Neural information processing

Web site of this course: http://pattern-recognition.weebly.com.

Two topics

Neural information processing

- Origins
- Perceptron
- Multilayer perceptron (MLP)
- Convolutional neural network (CNN)

Training multilayer networks

- Perceptron learning
- Optimization basics
- Stochastic gradient descent
- Backpropagation learning algorithms

Neural Information Processing

- Origins
- Perceptron
- Multilayer perceptron
- Convolutional neural network

McCulloch & Pitts (1943)

A simplified neuron model: the Linear Threshold Unit.

The perceptron (1957)

Supervised learning of the weights using the Perceptron algorithm.

Rosenblatt 1957

The perceptron is a machine

Cybernetics (1948)

- Mature communication technologies, nascent computing technologies
- Redefining the man-machine boundary

Two camps to design computers

Biological computer

Mathematical computer

$$\frac{\partial}{\partial a} \ln f_{a,\sigma^{2}}(\xi_{1}) = \frac{(\xi_{1} - a)}{\sigma^{2}} \int_{a,\sigma^{2}} (\xi_{1}) dx = \int_{a,\sigma^{2}} \frac{\partial}{\partial \theta} T(x) f(x,\theta) dx = \int_{a,\sigma^{2}} \frac{\partial}{\partial \theta} T(x) f(x,\theta) dx = \int_{a,\sigma^{2}} \frac{\partial}{\partial \theta} T(x) f(x,\theta) dx = \int_{a,\sigma^{2}} \frac{\partial}{\partial \theta} f(x,\theta) dx = \int_{a,\sigma^{2}}$$

- Which model to emulate : brain or mathematical logic ?
- Mathematical logic won.

Computing with symbols

General computing machines

- Turing machine
- von Neumann machine

Engineering

- Programming (reducing a complex task into a collection of simple tasks.)
- Computer language
- Debugging
- Operating systems
- Libraries


```
while the same (int of the same (int of
```

Computing with the brain

An engineering perspective of brain

- Compact
- Energy efficient (20 watts)
- 10¹² Glial cells (power, cooling, support)
- 10¹¹ Neurons (soma + wires)
- 10¹⁴ Connections (synapses)
- Volume = 50% glial cells + 50% wires.

Could brain be a *general* computing machine?

- Basically, brain is
 - Slow for mathematical logic, arithmetic, etc.
 - Very fast for vision, speech, language, social interactions, etc.
- Because of brain evolution: vision -> language -> logic.

Success stories

Record performance

- MNIST (1988, 2003, 2012)
- ImageNet (2012)

...

ImageNet

Real applications

- Check reading (AT&T Bell Labs, 1995 2005)
- Optical character recognition (Microsoft OCR, 2000)
- Cancer detection from medical images (NEC, 2010)
- Object recognition (Google and Baidu's photo taggers, 2013)
- Speech recognition (Microsoft, Google, IBM switched in 2012)
- Natural Language Processing (NEC 2010)

• ...

Neural Information Processing

- Origins
- Perceptron
- Multilayer perceptron
- Convolutional neural network

Biological Neuron

Artificial Neuron

Neuron's Mathematical Model

Without f

$$y = \sum_{i=1}^4 w_i x_i = w^T x$$

A neuron is a "linear equation"

With
$$f$$

$$y = f(w^T x)$$

$$= \begin{cases} \text{C1 (label 1) if } w^T x > t \\ \text{C2 (label 0) if } w^T x \leq t \end{cases}$$
 A neuron is a "linear classifier"

"And" function Classification

x_1	X 2	r
0	0	0
0	1	0
1	0	0
1	1	1

Input and output for the AND function.

The perceptron that implements AND and its geometric interpretation.

• The discriminant is y = f(x1 + x2 - 1.5).

"XOR" Function Classification

x_1	X 2	r
0	0	0
0	1	1
1	0	1
1	1	0

Input and output for the XOR function

XOR problem is not linearly separable. We cannot draw a line where the empty circles are on one side and the filled circles on the other side.

Perceptron can not solve the XOR classification problem

The General Perceptron Model

$$o = \sum_{j=1}^{d} w_{j} x_{j} + w_{0} = w^{T} x$$

$$w = [w_{0}, w_{1}, \dots, w_{d}]^{T}$$

$$x = [1, x_{1}, \dots, x_{d}]^{T}$$

$$y = \begin{cases} 1, & \text{if } f(o) > t \\ 0, & \text{if } f(o) \le t \end{cases} \quad (t \text{ is 0 usually})$$

$$o_i = w_i^T x = \sum_{j=1}^d w_{ij} x_j + w_{i0}$$

$$y_i = \begin{cases} 1, & \text{if } f(o_i) > 0 \\ 0, & \text{if } f(o_i) \le 0 \end{cases}$$

Perceptron Model for Classification

For a K-class classification problem

- For a given x with unknown class
- $x \in \text{class } k$, if $y_k = 1$, $y_j = 0$ for all $j \neq k$
- Only one y_k can be 1

$$o_i = w_i^T x = \sum_{j=1}^d w_{ij} x_j + w_{i0}$$

$$y_i = \begin{cases} 1, & \text{if } f(o_i) > t_i \\ 0, & \text{if } f(o_i) \le t_i \end{cases}$$

A simplified K-class classification problem

- $x \in \text{class } k$, if $y_k = max_i y_i$
- $y_i = w_i^T x = \sum_{j=1}^d w_{ij} x_j + w_{i0}$

Training the perceptron

Testing for K-class classification problem

- For a given x with unknown class
- $x \in \operatorname{class} k$, if $y_k = \max_i y_i$
- $y_i = w_i^T x = \sum_{j=1}^d w_{ij} x_j + w_{i0}$

That is

- A *W* represents a perceptron
- Given a W, then we can classify a pattern x

$$W = \begin{bmatrix} w_1, w_2, \cdots, w_K \end{bmatrix}$$
$$= \begin{bmatrix} w_{11} & \cdots & w_{K1} \end{bmatrix}$$
$$\vdots & \ddots & \vdots \\ w_{1d} & \cdots & w_{Kd} \end{bmatrix}$$

A Machine Learning problem:

how to obtain the W of a perceptron

- We need a set of training patterns (X, Y)
- We need a learning algorithm to learn W by (X,Y)
 - => Perceptron learning algorithm A: W=A(X,Y)

Neural Information Processing

- Origins
- Perceptron
- Multilayer perceptron (MLP)
- Convolutional neural network

Multi-Layer Perceptron (MLP)

- Extension of perceptron from *one* layer into *multiple* layers
- Three differences compared with perceptron
 - Transfer(activation) function
 - From step function to sigmoid function
 - Layer
 - Add hidden layer
 - Training algorithm
 - Backpropagation learning algorithm to learn the weights

outputs

hidden layers

input vector

Neuron's Mathematical Model

f is a step function

$$y = f(w^{T}x)$$

$$= \begin{cases} C1 \text{ (label 1) if } w^{T}x > t \\ C2 \text{ (label 0) if } w^{T}x \le t \end{cases}$$

A neuron is a "linear classifier"

f is a sigmoid function

$$y = f(w^{T}x)$$

$$= \begin{cases} C1 & \text{if } f(w^{T}x) > 0.5 \\ C2 & \text{if } f(w^{T}x) \leq 0.5 \end{cases}$$

A neuron is still a "linear classifier"

Transfer functions: Sigmoid

$$y = f(x) = \frac{1}{1 + e^{-x}}$$

$$y = f(w^T x)$$
$$= \frac{1}{1 + e^{-w^T x}}$$

Propagation from input to output

$$y_i = v_i^T z = \sum_{h=1}^H v_{ih} z_h + v_{i0}$$

$$\begin{split} z_h &= sigmoid \left(w_h^T x \right) \\ &= \frac{1}{1 + exp \left[- \left(\sum_{j=1}^d w_{hj} x_j + w_{h0} \right) \right]} \\ h &= 1, \dots, H \end{split}$$

MLP as a universal approximator

 The MLP that solves the XOR problem

$$= x_1 \text{ XOR } x_2$$

$$= (x_1 \text{ AND } \sim x_2)$$

$$\text{OR } (\sim x_1 \text{ AND } x_2)$$

 The hidden units and the output have the threshold activation function with threshold at 0

Training the MLP: Backpropagation

Testing for K-class classification problem

- For a given x with unknown class
- x = class k, if $y_k = max_i y_i$
- $y_i = v_i^T z = \sum_{h=1}^H v_{ih} z_h + v_{i0}$

That is

- A W represents a MLP
- Given a W, then we can classify a pattern x

$$W = [w_1, \cdots, w_K, v_1, \cdots, v_H]$$

A Machine Learning problem:

how to obtain the W of a MLP

- We need a set of training patterns (X, Y)
- We need a learning algorithm to learn W by (X,Y)
 - => Backpropagation learning algorithm B: W=B(X,Y)

Neural Information Processing

- Origins
- Perceptron
- Multilayer perceptron network
- Convolutional neural networks (CNN)

What Is CNN

- An extension of MLP
 - More hidden layers to extract features of signal (image, speech)
 - Depth of network is "deep"
- CNN is one famous model of deep neural networks (DNN)

Why CNN? Human vision is fast

Experiments show that humans can detect animals in a scene in less than 150 ms.

Simon Thorpe et al.,
"Seeking Categories in the Brain,"
Neuroscience 2001.

Hubel & Wiesel (1962)

Insights about early image processing in the brain

- Simple cells detect local features
- Complex cells pool local features in a retinotopic neighborhood

The Neocognitron

(Fukushima 1974-1982)

Local connections

Convolution

Multiple convolutions

CNNs in the 1990s

- 1989 Isolated handwritten character recognition (AT&T Bell Labs)
- 1991 Face recognition. Sonar image analysis. (Neuristique)
- 1993 Vehicle recognition. (Onera)
- 1994 Zip code recognition (AT&T Bell Labs)
- 1996 Check reading (AT&T Bell Labs)

Convnets in the 1990s

Pooling

Name	Pooling formula
Average pool	$\frac{1}{s^2}\sum x_i$
Max pool	$\max\{x_i\}$
L2 pool	$\sqrt{\frac{1}{s^2} \sum x_i^2}$
L _p pool	$\left(\frac{1}{s^2}\sum x_i ^p\right)^{\frac{1}{p}}$

Contrast Normalization

Contrast normalization

- Subtracting a low-pass smoothed version of the layer
- Just another convolution in fact (with fixed coefficients)
- Lots of variants (per feature map, across feature maps, ...)
- Divisive normalization

CNNs in the 2010s

Convnets in the 2000s

- OCR in natural images [2011]. Streetview house numbers (NYU)
- Traffic sign recognition [2011]. GTRSB competition (IDSIA, NYU)
- Pedestrian detection [2013]. INRIA datasets (NYU)
- Volumetric brain segmentation [2009]. Connectomics (MIT)
- Human action recognition [2002,2011]. Smartcatch (NEC), Hollywood II (SF)
- Object recognition [2004,2012]. Norb (NEC), ImageNet (UofT)
- Scene parsing [2010-2012]. Stanford bldg, Barcelona (NEC, NYU)
- Medical image analysis [2008]. Cancer detection (NEC)

ImageNet 2012 competition

Object recognition. 1000 categories. 1.2M examples

ImageNet CNN

- Structure (conv-relu-maxpool-norm)³-linear-relu-linear-relu-linear
- Very good implementation, running on two GPUs.
- ReLU transfer function. Dropout trick.
- Also trains on full ImageNet (15M images, 15000 classes)

(Kirzhevsky, Sutskever, Hinton, 2012)

ImageNet CNN

Replicated CNNs

Today: Neural Information Processing

- Origins
- Perceptron
- Multilayer perceptron (MLP)
- Convolutional neural network (CNN)

Next:

Training multilayer networks

- Perceptron learning
- Optimization basics
- Stochastic gradient descent
- Backpropagation learning algorithms